
www.manaraa.com

Real-Time Systems, 21, 165–189, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Towards a Mobile Code Management Environment
for Complex, Real-Time, Distributed Systems

ALEXANDER D. STOYEN astoyen@computer.org
University of Nebraska at Omaha, USA

PLAMEN V. PETROV plamen@21csi.com
21st Century Systems, Inc., USA

Abstract. We present a novel mobile code management environment, currently under design and development.
Our design employs an open architecture, suitable for “plug-and-play” with COTS and other groups’ tools. While
we have studied new algorithms, cost and objective functions, and other fundamental issues, the main contribution
of this experimental research work is in the environment itself. It should be noted that networked platforms,
such as the World Wide Web, are inherently not suitable for traditional, predictable real-time applications. Thus,
real-time concerns necessarily need to be blended with others concerns, and the target applications, making use of
our environment, will too be a blend of partially hard real-time and partially (or mostly) soft-real- time ones. The
prototype environment will therefore support performance-based analysis and management focusing not only on
predictability but also on compilation, efficiency, safety and other tradeoffs. We have selected the Java language
and its bytecode format as a representation for mobile code as well as a language for our implementation.

Keywords: distributed systems, mobile code, mobile agents, compilation and interpretation, efficiency and safety
tradeoffs, Java, real-time systems

1. Introduction and Motivation

In the recent years there has been quite a bit of activity and discussions on the network-
centered computing concept and its enabling technologies, one of which is mobile code. The
paradigm of mobile-agent computing brings profound advantages to real-time distributed
computing, at a price, which seems acceptable for today’s network-enabled computing re-
sources. Mobile agents, which travel to bulky data, communicate and execute in open,
heterogeneous environments, present a promising alternative to the traditional client-server
approach. Agent-based applications represent more naturally the interactions in many prob-
lem domains by shifting the focus away from implementation details and towards reducing
overall complexity. Mobile code overcomes many limitations of traditional approaches,
caused by immobility of large or sensitive data. Thus, mobile code techniques are steadily
gaining popularity not only as a research field, but also as applied technology in various
industries. The hype around the network- centered computing approach is slowly fading
and now we are facing the serious problem of providing mobile-code environments, robust
enough to support the design and development of complex real-time systems.

In this work we examine the features and tradeoffs of such mobile code environment
for complex, real-time distributed computer systems. In a modern software design and
development system, support for multiple models of distributed computing is strongly de-
sirable, but on the market, very few (close to none) products exist, which could claim



www.manaraa.com

166 STOYEN AND PETROV

such features. Even in the research community, mobile code design and implementation
tradeoffs are rarely discussed. We see a large gap between the need for sophisticated
tools and integrated environments for mobile code on one hand, and the existing tools,
which merely aim at enabling code mobility, on the other. Implementing mobile code,
without a thorough analysis of the ramifications to functional and non- functional require-
ments of such mobility, could be very expensive and even dangerous for large complex
systems.

In the followingSectionwe outline our model for mobile code management. InSection
3 we present related work by other groups and compare it to our approach. Next, in
Section 4we give detailed description of the components of our tool suite and we present
the challenges of our ambitious approach. We conclude with a summary of the work and
additional comments on the future possibilities of mobile code inSection 6.

2. A Model for Mobile Code Development Environment

When designing tools and environments for modern complex computer systems, the user—
a software engineer—must be provided with powerful technologies to design, develop
and test systems on distributed heterogeneous platforms linked in an arbitrary topology
network. This is especially true for systems, which provide code mobility capabilities. The
developer needs to specify resource requirements for the mobile agents, which must be
satisfied at every computational node visited. The resource allocation must be automated
during the design and development via thorough analysis of objectives, specifications and
matching available implementations, even in the presence of partially undefined system
components. Our environment uses objective, component and platform descriptions (stated
in the Unified Modeling Language—UML, (Booch, Rumbaugh, and Jacobson, 1999)) to
guide the development process. System objectives are overall desired tradeoffs, which
drive the instrumentation and allocation. Compilation and interpretation are not objectives
per se, whereas high performance in terms of execution and communication speed is an
objective (which will obviously affect the choice of allocation and instrumentation). Other
objectives include security, fault tolerance, load balancing, communication minimization,
and predictable timely execution. The functionality required of a component (e.g. SAR or
corner turning) is similarly specified and carried through the design.

Real-Time Concerns

Mobile computing is done over networked platforms, including local and wide are networks,
including the Internet. Unlike traditional embedded, tightly coupled or even distributed
real-time platforms, an arbitrary networked topology is intrinsically unpredictable due to
the varying delays in communications and routing, and thus such platforms cannot support
guaranteed, predictable real-time computation in the sense of (Halang and Stoyenko, 1991).
The question is, therefore, does it make sense to run (and thus develop and support) real-
time applications over the Web and other similar networked platforms. We believe that in
fact real-time applications are abundant in networked environments. However, very few



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 167

of these can be classified as hard real-time, in the sense of (Halang and Stoyenko, 1991).
Rather, they are hybrid, in the sense that each has some components which have local,
hard real-time constraints, while the bulk of the application is soft real-time. Consequently,
predictable real-time performance is only one of a number of objectives (or requirements)
of such applications. The overall objective is then formed (as already discussed earlier) by
including multiple individual ones (real-time, efficiency, security and so on), and forming
(combining, scaling, fusing and so on) and overall integrated objective function. In turn,
this function is then used to drive such processes as component allocation, analysis and
prediction of performance, routing, and so on. Among measures of real-time performance,
incidentally, one may find a number of quality of service (QoS) ones next to traditional hard
real-time ones (e.g., whether any deadlines at all have been missed).

A predictable real-time systems traditionalist (such as we ourselves used to be fifteen
years ago) may protest this discussion and the inclusion of soft real-time into the equation.
We should point out that while hard real-time controls are entirely (and perhaps solely)
suitable for some applications (e.g., embedded controllers), larger- scale, complex systems
are perhaps never entirely hard real-time. Moreover, deadline satisfaction may not always
be the overall, sole measure of success. Consider for instance a system with two real- time
processes, both periodic with deadlines at the ends of each period, with periods of, say,
on the order of miliseconds and large fractions of a second, respectively. Both processes
become eligible at time T0. Which should be scheduled first? A traditional reaction would
be to schedule the tighter (former) process first. Yet, we know nothing so far of the processes
overall criticalities (we only know their periods). Suppose next we learn that the first process
represents the processing of visible light by the human eye and the second the rate, with
which heart muscles contract and pump blood. Since one can be very much alive, productive
and happy, even if blind, but none of these without a beating heart, we suggest, respectively,
that it may just be more prudent to schedule the “heart beat” process first. Surely then,
this is both in agreement with common sense and in disagreement with traditionally-held
deadline-oriented views on real-time systems.

With the key clarification of real-time concerns out of the way, we will now devote the
balance of the paper to the model and the environment where hard real-time performance
is but one of a number of integrated (and competing against each other) objectives.

Mobile Components and Component Relations

Mobile code components include generic classes, specialized classes, and objects. Com-
ponents may have both methods and threads and depend on each other through message
passing (blocking and non-blocking calls). If a callee component is passive (no threads),
it acts as a classic monitor. Otherwise, its method invocations are managed as rendezvous.
A generic class defines methods and generic types or constants that must be exported by
any specialization or implementation, and also provides generic method parameters and
attributes (e.g., QoS or security). A specialized class binds parameters and generic types
to concrete types and may also state some specifics of non-functional attributes (e.g., all its
implementations must provide QoS within certain bounds). An object provides a concrete
implementation, including method bodies and concrete attributes. We allow no aliasing1



www.manaraa.com

168 STOYEN AND PETROV

and no implicit inter-component dependencies. Mobile programs that exhibit such de-
pendencies represent a major risk. Our tool will in fact look for such aliasing and other
dependencies and flag them, as part of its operation.

Mobile Component Attributes

Components export signatures. Signatures have long been used in the formal methods
community for reasoning about the interoperability of components, and for initial deter-
mination of when components are likely to be interchangeable. In addition to traditional
interface and parameter information, a signature contains non-functional attributes. While
system objectives represent what the developer wishes the system to be like, component
attributes represent what a componentis like, assuming some default modus operandi (e.g.,
the component resides at the same node as the resources it needs, is the only one requesting
these resources, and is to be interpreted in its entirety). Moreover, other relevant static and
dynamic information may be stated. Static information includes multilevel system descrip-
tion, including the componentís source programming language, targeted OS architecture, a
destination node within a network, dependencies (e.g., a legacy high-performance Fortran
library), and so on.

Dynamic information includes the component’s current state and structure, pertinent non-
functional elements, such as urgency or deadline, an estimate of execution time remaining,
and so forth. We expect that components may wish to migrate or return to their node of
origin for a retrofit and a reallocation. The component structure, similar to program graphs,
specifies internal component organization, in terms of control flow, code segments, and
calls. Importantly, the segments which form the structure are annotated with their current
non-functional attributes, such as whether they have been compiled, how long they would
take to compile, interpret or execute, how secure they are, and so forth. The component’s
current state information is correlated with the structure information.

Information on remaining time and remaining work will obviously change as a component
executes, remains idle, or is passed around the network, due to the passage of time and
completion of work. Less obviously, this and other information, including for example
time-to-compile, will change as the component moves to different platforms, which have
differing performance. Continuing this example,time-to-compilemay be affected not only
by specific characteristics of the compiler (possibly a different compiler), but also by more
optimization, less working memory for the same compiler, or by characteristics of the
platform (register set, instruction set, multiple processors, and so on). There could even be
second-level effects, such as location of libraries relative to the current machine.

Dynamic information includes the component’s current script. A script is a list of instruc-
tions processed by the environment’s script interpreter. Every instruction requests that a
particular tool (specific or generic) be applied to the component in a certain manner. For in-
stance, an instruction may state that a commercial compiler should compile the component
for a particular platform while the environment constructs a resource allocation, and then
the component be launched with this resource allocation. As the requested work proceeds,
the script instructions are consumed. While our environment will have a script interpreter,
we do not expect this to be the case on all platforms and/or nodes. For nodes, which do not



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 169

have such a script interpreter, the scripts target the tool that hosts the component (e.g., an
Internet browser). Thus, scripts are written in the language native to the host tool (e.g., for
a COTS Internet browser, in JavaScript, ActiveX or VisualBasic). Scripts may include im-
plementation dependencies, on the local compiler and platform, and dependencies on static
or dynamic signature state information. While these dependencies could, in principle, be
quite sophisticated, we will initially handle only a small set of simple dependencies.

Mobile Component Representation and Implementation

A component consists of three parts. The definition—in a high level language, compiled
or intermediate form - defines what the object does. The likewise-stated implementation
defines how the object operates (a class may have no or only a placeholder implementa-
tion). Finally, the signature provides a language- independent description of the definition,
the non-functional attributes, object’s source and target information, and so on. Every
component originates in a certain environment and aims to execute in one or more, possi-
bly different environments. Pertinent environmental information includes the component’s
implementation language, architectural dependencies, if any, in the implementation, any
known message-partner specifics (e.g., upon arrival at a node, an object always registers
its location at a well- known port), space, bandwidth, energy, and other non-functional
attributes (interpreted as requirements for a target platform). Target platform topology, link
and node capacities, resources at each node, and so forth, are also stated as requirements.
This information is essential for the allocation process and very important for the tradeoff
analysis that drives the instrumentation process as well.

Decisions at Local & Remote Nodes

Given a mobile code component, a target platform, and desired objectives, the environment
recommends local or known remote resources to be allocated to satisfy the objectives. Given
the desired QoS levels (typically in terms of performance vs. timeliness, accuracy, effi-
ciency, security, dependability, etc.), the environment considers tradeoffs between amount
of time it will take to instrument the component, compile and execute, interpret, and so
on. If these tradeoffs cannot be assessed locally with sufficient accuracy, negotiation with
remote nodes (where additional resources may be located) is undertaken. Given a mobile
code component, whose script expects it to travel to a remote node (or, more generally,
to visit a sequence of nodes), the environment recommends a route, along with necessary
resource allocation, instrumentation and other decisions at intermediate points (nodes and
links). Despite the seemingly different scenario, very similar questions need to be consid-
ered as for local node decisions. For instance, routing considerations are similar to those of
making a remote resource available locally (or, perhaps, making the component available
remotely). Similarly to the local node case, negotiation is used to evaluate tradeoffs and
project eventual performance-based measures, both at intermediate nodes and at the target
node, where the component is to be launched.



www.manaraa.com

170 STOYEN AND PETROV

Delayed Access

The environment may respond to a shortage of resources (or to anomalous situations such
as an active security exception) by recommending deferral of the current request until
resources are likely to be available. An exception is allowed for tasks of high-priority or
with urgent deadlines. Such delay will result in either rescheduling the activity at a certain
time or will cause the request to be resubmitted after an appropriate interval. Similarly, the
environment may instrument the component to request a resource or to re-compile itself at
a later, more appropriate time.

Re-allocation & Retrofit

Given a particular allocation, which is not performing as required, the environment may
be asked to recommend a re-allocation, dynamically. In turn, we may consider whether to
migrate certain mobile components or the resources they use, to change the resource allo-
cation mix, to change the component mix (by substituting relatively expensive components
with less expensive, functionally-similar versions or by even removing some non-essential
components), or to implement a mixture of all such changes. Similarly, given a component
that is not achieving efficiency or high-assurance measures as projected, the environment
may be asked to retrofit the component. That is, the component may be re-analyzed, and
then re-instrumented. As part of this process, the cost and objective functions that were
used to drive the original instrumentation may be adjusted as well.

Multiple Components and User Access

Given multiple, possibly interrelated mobile code components, each with a script (or perhaps
a common script), the environment may be asked for local or remote, including routing,
resource allocation recommendations. Moreover, the environment may be consulted by
human users or agents, to speculate on resource allocation for component(s) under user
control or under operation by other tools. Conversely, where allocation decisions are
complex, or when there is no perfect match, and the decision is not urgent, the environment
may, through our common interface, consult a user or an agent for advice. The environment
may be similarly consulted on a compilation or instrumentation decision. However, given
the high complexity in inter-component instrumentation, we will explore it carefully, since
in this case the risks could easily far outweigh the benefits.

3. Previous Work

Our work is related to efforts in allocation and related tools, in mobile code management, and
in specialized compilation/interpretation. Some of this work addresses real-time software
but likely most at this stage does not. We fully expect more of this work, by us and by



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 171

others, to address real-time applications that run on networked platforms (e.g., over the
WWW) in the near future.

In mobile code management, we credit Java’s bytecodes (Gosling, 1995) with the first
reported use of typestates (Strom and Yemini, 1986), standardized scalars, and a trusted
interpreter in a major commercial language. Not surprisingly, much of the current work in
this area is therefore Java- related. NewMonics, Inc.’s ongoing work was the first to aim
at a clean-room real-time Java implementation (with some language additions), featuring
predictable garbage collection. Many established vendors, including Hewlett-Packard,
Sun Microsystems and others, now claim and offer products with the same capability.
An extension of Java called Sumatra (Acharya, Ranganathan, and Saltz, 1997) features a
distributed monitor that helps Sumatra programs adjust to resource availability. Support
for Java agents is often provided, through research efforts (e.g., Jada (Ciancarini and Rossi,
1997)) and to some extent, commercially (e.g., ObjectSpace’s 1997-announced Voyageur).
These efforts do not appear so far to consider tradeoffs among non-functional objectives.

Omniware (Adl-Tabatabai, Langdale, Lucco, and Wahbe, 1996) combines the use of
software fault isolation and careful high level language to detailed-level (including RISC
instructions, registers) intermediate representation translation to add reasonable safety while
not loosing too much efficiency in mobile code. VCODE (Engler, 1996) also uses a detailed
(i.e. low-level) even if machine-independent interface (of an idealized load-store RISC
machine), and very efficiently generates dynamic code. Clarity Mcode (Lewis, Deutsch,
and Goldstein, 1995) is a retargetable intermediate representation for compilation on both
Sun and non-Sun platforms of a simple C++ dialect (Clarity C++) developed by Sun.
Auslander et alii (Auslander, Philipose, Chambers, Eggers, and Bershad, 1996) applies
carefully incorporates (through templates, setups and specializations, and other methods)
local optimization into dynamic code generation. These efforts appear to rely on ad hoc
allocation and management.

Software architecture approaches to tools, such as the DARPA- funded Honeywell HTC
work (Binns and Vestal, 1995), aim to support formal model co-generation and do some
behavior prediction. However, the work does not appear to support multi-objective or mo-
bile code systems. Two related DARPA projects at Honeywell Space & Missile Systems
(with HTC cooperation) do aim to eventually produce a tool for parallelization and possibly
allocation in HPC systems. However, neither mobile code nor multiple objectives have been
considered. Another HTC tool (Bhatt, 1993) does perform ad hoc allocation while instru-
menting low-level computational requests. Among commercial tools, Telelogic’s SDT and
NuThena’s Foresight do perform allocation-like design, but no allocation for HPC or any
parallel or distributed platforms per se. To the best of our knowledge, there are no allocation
tools for mobile code components (evenconventionalprogram development tools for Java
and JavaScript are in the emerging stages as of this writing). Some interesting research on
new design paradigms for relocatable and mobile code (e.g., (Bharat and Cardelli, 1995;
Baldi, Gai, and Picco, 1997; Carzaniga, Picco, and Vigna, 1997; Ghezzi and Vigna, 1997))
are emerging as well, though considerably more work will need to be done.

In addition to the work in tools and mobile code management, there are notable efforts in
related research areas, including security for agents (Farmer, Guttman, and Swarup, 1996;
Gray, 1996), mobile object systems and their support (Duggan, 1997; Franz, 1997), partial



www.manaraa.com

172 STOYEN AND PETROV

information query in databases (Buneman, Davidson, and Watters, 1992; Glagowski and
Jones, 1995; Shenoi, Melton, and Fan, 1992), incremental mechanisms (Hoover, 1992; Pras-
towo, 1995), static analysis and transformations (Marlowe and Ryder, 1990; Sreedhar, Gao,
and Lee, 1995), programming environments and attribute grammars (Reps, 1988), graph al-
gorithms, especially transitive closure and topological sorts (Prastowo, 1995; Yellin, 1993),
view materialization for databases (Blakeley, Coburn, and Larson, 1989), incremental and
automatic program derivation (Liu and Teitelbaum, 1995; Jones, Gomard, and Sestoft,
1993), finite differencing [PK82], and incremental languages (Yellin and Strom, 1991). A
number of recent efforts are also noteworthy, trying to apply well-developed theories of pro-
gram correctness to limited tradeoff considerations. Among these Necula [N97] attaches
proofs or proof obligations to libraries or foreign code; verifying the proof then adds to
the trustworthiness of the code. Plezbert and Cytron [PC97] analyze when or whether to
compile (“just-in-time” or “better- late-than-never”) code elements. Hogstedt, Carter and
Ferrante [HCF97] improve predictably the parallelization of tight nested loops, which is
relevant to analysis of real-time programs.

While these and many other advances are very commendable, they do not sufficiently
address performance tradeoffs among mobile code objectives (e.g. compilation vs. inter-
pretation vs. safety). Moreover, many cited systems have a strongly “pre-wired” notion
of how to optimize and do not allow for flexibility nor dynamic decision-making (and un-
making). Finally, many of these systems are ad hoc (e.g., VCODE is efficient but manual
and thus, in a sense, ad hoc). Our approach, through an integrated tool family, automation,
and an orthogonal treatment of conflicting objectives and mobile code management, should
thus be of interest and contribution the existing state of the art.

4. Details of Our Approach

We present an initial design for a powerful environment for mobile and conventional code
management. The environment features an integrated set of tools for static analysis, simula-
tion and symbolic execution, as well as run-time mobile code management. In the following
subsections we outline each component of the environment and its place in the global view.
Then we discuss challenges in this approach. On the diagram in Figure 1, which represents
a mobile code development environment, our tools are shaded. The user interface is not
shaded because visualization per se is not a primary contribution of this work, as we could
develop a COTS-based UI.

4.1. Components for a Mobile Code Management Environment

Storing, Fetching, Translating, Editing

Connected and standalone mobile components are stored in commercial databases, Internet
repositories and other sources (perhaps, a user develops a mobile component anew), as
are descriptions of resources, the visible network topology, and so on. Search engines are
used to find or place items in these databases and repositories, based on their functional



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 173

Figure 1. A mobile code development and management environment.

and non-functional descriptions. A previously processed component may also return from
a remote host where it was launched, for a retrofit. Component descriptions are updated
by the Component Editor, which is also responsible for extracting and updating multilevel
resource and network descriptions. Translators are used to map other COTS/GOTS descrip-
tion languages to and from UML, which the environment uses for representations. Formal
techniques will prove useful in deriving such translators and will reduce the amount of
effort in providing translators for different platforms and notations. A component or set
of components (or, in some cases, alternatives for components) is proposed, built and/or
fetched, typically on the basis of system objectives. Resources are selected and fetched
(not necessarily in that order) from local information and/or resource repositories, using
tools described below, on the basis of system objectives, signatures of services requested



www.manaraa.com

174 STOYEN AND PETROV

and provided, and such system state information as is available. Through the Component
Editor the Translators are instructed to map the objectives to appropriate search engine
query structures. In addition to components and resources, the Editor also works on system
objectives, component attributes and scripts. The edited (or simply passed through the Edi-
tor) components are worked on by other tools, including Analyzer, Allocator, Transformer,
Compiler, Instrumenter, and others. As discussed below, which tool works on which com-
ponent(s) and when is governed by scripts, created or modified, in turn, by human users
and/or agents.

Deciding, Analyzing, Transforming, Instrumenting, Allocating, Compiling, Generating
Stubs

Once a mobile component (or a set of communicating components) has been made available,
a Quick Situation Assessor is tasked to look at the component first. The Assessor is most
valuable when a component needs to be sent somewhere in a hurry and in turn requires
some basic resources, quickly. Similarly, the component may need to substitute for a failed
component or it may require an urgent retrofit. The Assessor’s job is to determine quickly
what if anything (e.g., compilation, instrumentation) needs to be done to the component
and/or whether it can be provided with the needed resources and sent according to a quickly-
selected route to (a reasonable) destination. Alternatively, the component may be referred to
the Analyzer/Allocator, forwarded to the Script Interpreter (with an updated script), returned
to the Editor, or declared a failure (e.g., if the Assessor determines that the component will
necessarily miss its deadline by the time it may possibly get the needed resources). If the
component is not suitable, given the objectives, the Assessor may request that the Editor
fetch a less expensive, functionally- similar component version, and that the human user
or system architect be informed. Formal methods have proven to be useful in promoting
software reuse, and in particular in identifying functional compatible components. The
principle of step-simulation and refinement enables the identification of components that
although not necessarily 100% compatible, can be used to implement particular patterns of
behavior. Such techniques will be employed where their use is expected to reduce costs in
determining appropriate matches.

Components chosen for detailed analysis and possible retrofit are worked on by the An-
alyzer/Transformer. This tool examines the component vis-`a-vis a certain tradeoff among
conflicting objectives, and applies program transformations to achieve optimality on the
tradeoff. Examples of transformations include replication for additional fault-tolerance,
removing an unnecessary security check or array subscript range check, or changing a
callee-method binding to a less precise but faster version, to speed up execution. In the
last case, the replacement might be temporary, providing additional time and resources
for optimization of this or another task, allowing rescheduling on a change in task set, or
otherwise responding to a change in a requirement or in the underlying distributed plat-
form. Components not requiring any more analysis or transformations are (incrementally)
compiled and instrumented, as required, to force satisfaction of non-functional objectives
as well as to self-report, self-monitor and fit in host environments. Components chosen for
detailed analysis and allocation are assigned by the Analyzer/Allocator. This tool exam-



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 175

ines the component (or multiple components) and its resource requirements, which may be
conflicting among each other, and certainly are competing with other components, against
available system resources. The examination is performed vis-`a-vis a particular objective
function (which drives the allocation) and following a resource allocation heuristic.

For both tools, both the function and the heuristic may be switched until a suitable allo-
cation/instrumentation choice is found or the tool gives up. For a suitable set of resources
to be found, the set must conform to the requirements, profess sufficient quantities avail-
able (given its current and projected future use), and be located in such a manner that a
suitable strategy for making the resources available to the component can be constructed.
In a high- performance environment, suitable strategies are expected to include code and
data movement and re-allocation, to optimize the overall access. In particular, avoiding
massive computation and communication imbalances is a frequently expected necessity
(even though the components are expected to request massive amounts of computation and
communication). If successful, the tool generates an allocation and a strategy for imple-
menting it. The component’s script is updated accordingly and the Script Interpreter is
asked to take over, to implement the allocation. For instance, the script may identify a set
of five resources, needed by the component, describe a route to get the component to a node
with the three of the five resources, order that the fourth resource be sent to that node, and
generate a stub to travel to the node of the fifth (bulky) resource, to execute there on behalf
of the component, returning the results to the component.

Components that require stubs to be generated are passed to the Stub Generator. Again,
refinement techniques generated in the formal methods community will prove useful in
this process, generating stubs to match particular requirements identified earlier. Stubs
may be needed because a component may require the use of a distributed set of resources,
necessitating in turn remote use of some, and thus stubs for communication. The com-
ponent may also request (through instrumented “triggers”) that it be (incrementally or
partially) compiled at a remote host. Stubs support the passing of arbitrary parameters
(including methods and objects), call-backs and synchronization, and optimization of call
and return data streams, to facilitate high-performance, high-confidence computation and
communication needs. (Un)marshaling and conversion of parameter messages suitable for
heterogeneous (in hardware, OS, and languages) environments are performed here as well.

Interpreting, Executing

The Interpreter interprets source or intermediate form, and the Kernel executes compiled
components. In principle, if the code is properly instrumented it may run on a COTS kernel
(or interpreter) and still operate correctly. For instance, the code may at a certain point
request that a routine (inserted earlier by the instrumentation) be executed. The routine
will assess whether the functional code to be executed next should first be compiled or just
interpreted. Depending on the outcome, the routine will pass back to its caller a handle
via which the next step (compilation and then execution, or straight interpretation) will
be executed. However, given the widely varying degree to which COTS interpreters and
kernels provide suitable APIs for such functions, it may not be straightforward to build such
functions generically and then specialize them for particular COTS elements. Moreover, we



www.manaraa.com

176 STOYEN AND PETROV

foresee potential efficiency sacrifices in implementing such functions. Finally, we are not
certain that COTS kernels and interpreters (and compilers) can be easily used for incremental
“just-in-time” compilation. Thus, one must be prepared to extend COTS interpreters and
kernels through pre-/post-processors and API extensions.

What differentiates our Interpreter and runtime Kernel is the ability to follow instrumented
requests, such as assessing the degree of satisfaction of objectives, triggering partial (re-)
compilation, or sending the component back for a retrofit. Our experience in building such
tools also suggests that instrumentation may conflict with general scheduling and resource
allocation. For instance, a general preemptive scheduler destroys any guarantee or measure
of timely performance, when the measure is triggered at arbitrary points. On the other
hand, when preemption and triggers are restricted to occur only at call- and return-times,
such guarantees and measures are possible. While it may be necessary to build our own
Interpreter and Kernel, a better solution would be to augment (or provide suitable schedulers
for) COTS ones.

Script Interpretation

Script Interpreter processes scripts, which are instructions how to allocate, execute, interpret,
compile and otherwise process mobile components. Naturally, a component may arrive via
the network, from a remote node or may originate at the local node. Whichever node
launches the component, the Script Interpreter gets it after the component has been built,
analyzed, transformed, compiled and is ready to be processed, according to its script. The
script may in turn ask that the component undergo a re-allocation, or additional compilation,
or analysis, or other steps, at a later stage.

COTS Environments and Tools

In addition to our tools, the environment interfaces with various COTS packages: network
managers, kernels, interpreters, compilers, and various utilities, available on the network.
Our approach is to produce an open environment, one adhering to relevant emerging stan-
dards and interoperating with conventional tools, other mobile code tools, and various
services and functions. Clearly, we cannot expect a conventional tool to provide the same
level of detailed service for mobile components as our environment does. However, we
can expect that a reduced, “conventional” level of service be provided. For instance, a
COTS Internet browser will allow for manual allocation (without any concomitant analysis
or stub generation, other than that provided by the native language environment). Similarly,
a COTS browser should be able to interpret the entire component (ignoring instrumented
directives to compile and execute some parts). Moreover, COTS browsers and other tools
should also allow for user defined “escapes” which can be used in turn to invoke the tools
that we provide.



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 177

Libraries, Auxiliary Functions

While mobile components likely reside in databases, some auxiliary objects will be stored
as library entries. For instance, a COTS component may be represented using a proprietary
IDL. Then, translation routines to and from UML have to be provided, as library entries.
Similarly, we envision storing wrappers, RPC (un)marshaling and conversion templates
and routines, and others. Description and interfaces of these objects are exported. Again,
formal techniques are expected to prove to be useful in finding matches.

Atomic cost functions, scaling, fusion and conversion strategies, and example functions
(cost and objective) are stored. The descriptions of all these objects are exported. Some
functions will be marked for use in aggregates and others on their own. Related to these
functions, heuristics to integrate and evaluate them too are provided and stored in libraries.
While space considerations prevent us from presenting a detailed discussion of allocation
in this paper, we will put our considerable expertise in this area to extensive use here.
Essentially, a system consists of mobile components, which require resources, with func-
tional and non-functional properties. The goal is to allocate the resources, subject to the
conflicting objectives, constraints, and in the best possible way (there is significant com-
petition for the resources). This allocation process differs in level of detail only, across
different stages of the system lifecycle. Given the general growth of the problem space the
process has to consider, the Allocator must make use of heuristics and approximate “best
effort” strategies (exact allocation is computationally prohibitive). Thus, we will thus store
a slate of heuristics and their descriptions in libraries. These will include commonly avail-
able and “home-grown”: genetic, neural net, projection, greedy, and others. Three modi
operandi will be supported: search (entire space is considered per iteration), construction
(a fixed number of objects are considered per iteration), and hybrid (the heuristic relies on a
strategy/user to switch modes; e.g. first, do a quick global search, then optimize-construct
a local region. . . ).

We store routines that perform basic approximate and imprecise (converging and improv-
ing over time) arithmetic and symbolic computation. These are used as the need arises in the
environment’s activities (e.g., as a mobile component is built, instrumented, and allocated).
Owing to the special needs of embedded computation, we anticipate storing pre-designed
low power (i.e., a computation using power-inexpensive software and hardware implemen-
tations) versions of common computations (such as the Fast Fourier Transform, used heavily
in real-time imaging). While we should not need to develop new analyses or transformations
(or as few as possible), existing analyses and transformations will have to be translated,
and in some cases somewhat modified, to operate within our framework and environment.
These analyses and transformations are then stored as components. In fact, since there may
be competing analyses with different resource tradeoffs, or even providing different levels
of precision at different costs, and likewise competing transformation engines or transfor-
mation orders, these analysis and transformation components are accessible by component
matchers in a manner identical to other components.

Selecting, analyzing and allocating mobile components is inherently a heuristic process.
A componentís script dictates how to manage the component, stating when to allocate,
launch, run, and so on. Standard scripts are stored in libraries, and component-specific



www.manaraa.com

178 STOYEN AND PETROV

scripts are built, on the basis of component construction decisions and heuristic knowledge,
from these scripts. Similarly, agent scripts are developed and stored in libraries as well.
Other libraries will include compiler, OS, GUI, DB and other utility libraries.

Symbolic Executor, Simulator, Evaluator

To support detailed performance and other assessment for instrumentation, compilation vs.
interpretation vs. safety vs. performance tradeoff analysis, and allocation, we provide a
symbolic executor, simulator, and evaluator. These tools symbolically execute, simulate
or otherwise evaluate the would-be compiled, instrumented or allocated high- performance
mobile code on target platforms. Simulation and symbolic execution are more expensive
but also more detailed substitutes of objective function evaluation. When in the loop, the
human user interacts with these tools and with the simulations. Important concerns, such as
resource contention, identified in the simulations, are reported using colors, shapes and other
props. Moreover, the user is able to change key variables and trying alternate scenarios. We
envision eventually supporting four types of system sources, listed in the increasing degree
of detail (and time- space cost of use):

1. A mathematical system description (e.g., a system of constrained iterating equations);
using this method, it is possible to assess certain component-level non-functional objec-
tive satisfaction (e.g., component reliability) but only as boundary cases; it is impossible
to assess functional or behavioral characteristics.

2. A system description consisting of object interfaces (functional and non-functional
information); using this method, it is possible to assess both component-level and certain
inter-component non- functional and some functional (e.g. amount of inter-component
communication) objective satisfaction.

3. A system description consisting of object interfaces and flow- skeletons (calls, con-
ditionals, iterators but no actual functional code); cycle-burners and resource-idlers
written in the native language are used instead of the functional code, approximating
closely the codeís non-functional aspects; using this method, it is possible to assess
both intra- and inter-component non-functional objective satisfaction.

4. A system implementation; in principle, everything fundamentally assessable can be
assessed in this representation.

UI, Control, Humans, Agents

The environment uses an intuitive and powerful User Interface (UI). Operations on mobile
components, both during runtimes and in-between runtimes can be both monitored and
accessed. The control of all tools is accessible to the user, though every tool may operate
automatically as well (in which case the user may monitor and, if need be, interact with the
operation). Multiple mobile components may be of interest at any given time, some worked
on locally, others executing locally, others worked on remotely (by our or other environments



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 179

on remote nodes), and yet others executing remotely. In parallel, different tools or copies of
tools of the environment may be operating, at different stages of progress. For instance, one
mobile component may be under construction, another undergoing an allocation, another
in the process of being launched, another undergoing a retrofit/re-instrumentation, and yet
another executing. All such actions are displayed using an intuitive, graphical and, where
feasible, visual representation, including colors, shapes, icons, sounds, and animation.
The environment is used by humans and artificial agents. A human user is typically a
programmer, a network administrator, or possibly an application specialist. An agent is a
program with its own thread of control and a function, which uses the tools, and assists
with instrumenting, resource selection, route plotting so on. For instance, the Assessor
may have decided that there was no time for detailed analysis of security and performance
tradeoffs to drive the allocation, and that a mobile component be allocated default resources
and sent to a default node. In parallel, an agent may perform various tradeoff analyses and
determine that a different resource selection may be more appropriate, delivering reduced
but still adequate security but much better performance. The agent may then request (with or
without human concurrence, depending on the circumstances) that its component allocation
will be the one used and the original user selection should be “undone” and terminated.

4.2. Hard Issues and Supporting Technologies

Component, Platform and Objective Descriptions

Inference of values for component, platform and objective descriptions is a hard fundamental
issue. We will address it by restricting resource- algebraic and timing expressions to subsets
for which automated proofs exist, and/or for which static analysis, partial evaluation and
specialization are possible. For cases which resist such analyses, we will allow symbolic
execution and simulation verification, for as long as the number of cases to consider is kept
small. Otherwise, we will force approximate and imprecise solutions of the expressions.
Before any approximations are done, however, the user will be informed and queried for
possible re-formulation. Our tools will also suggest expression alternatives to the user
(through agents).

Another challenge will be recognition of new resources and resources at previously unseen
sites. If the remote site is using our or compatible tools, a resource description will be
available, and it should in most cases be reasonably simple to check the validity of the
descriptor, at least relative to the services and level of security required. Protecting against
malice, or at the extreme levels of the service or security demand, will admittedly be more
challenging. Otherwise, the tool will have to rely on a library of resource components,
and a resource-recognition algorithm. We intend to rely on commercial databases, possibly
with filters, to provide the library and its search engine; the recognition algorithm is a more
complicated issue, which will be addressed during a later phase of this work.

Some of the needed methods and analyses already exist to an extent in the CRL platform
(Stoyenko, Marlowe, and Younis, 1995; Stoyen, Marlowe, Younis, and Petrov, 1997), and in
the Destination resource allocator (Marlowe, Stoyenko, Laplante, Daita, Amaro, Nguyen,
and Howell, 1996; Amaro, Marlowe, and Stoyenko, 1996; Harelick, Marlowe, Stoyenko,



www.manaraa.com

180 STOYEN AND PETROV

and Sinha, 1995; Stoyenko, Welch, Laplante, Marlowe, Amaro, Cheng, Ganesh, Harelick,
Jin, Younis, and Yu, 1993). Others are available from other groups, in the literature or are
under development. We also have substantial expertise in formal method approaches to
automated proofs, incremental verification and validation, and related techniques (Bowen
and Hinchey, 1994; Bowen and Hinchey, 1995a; Bowen and Hinchey, 1995b, Farrow,
Marlowe, and Yellin, 1992; Halang and Stoyenko, 1991; Hinchey and Jarvis, 1995; Hinchey
and Bowen, 1997; Hinchey and Bowen, 1995; Marlowe and Ryder, 1991, Marlowe et
al., 1993; Masticola, Marlowe, and Ryder, 1995; Silberman and Marlowe, 1996; Younis,
Marlowe, and Stoyenko, 1994; Younis, Tsai, Marlowe, and Stoyenko, 1995). Thus, while
the problems of value inference and determination are very hard, they can and will be
addressed sufficiently to facilitate the environment construction.

Cost and Objective Functions

Our tools capture both requirements and promises as cost functions. These are fused, scaled
and converted into an integrated objective function, which is, in turn, used to measure the
“fitness” of a component or of an allocation. We have thoroughly researched cost and
objective functions. In the overwhelming majority of classic efforts (Callahan and Purtilo,
1991; Houstis, 1990; Levi, Mosse, and Agrawala, 1988; Hoang, 1991; Lo, 1988; Stone,
1977), cost functions are represented as constants or scalar variables. The objective function
is consequently computed as a linear expected-value summation, with either constant or
constant- sum weights, representing the significance of each cost function’s contribution.
However, such approaches may fail to represent adequately the situation, for a number of
reasons, including following: (1) significance values may change over time, (2) individual
objectives may exhibit a dependency on each other, (3) the integrated objective relationship
may not be linear. Consequently, and on the basis of our extensive experience in tools
and languages (Stoyenko, 1987; Stoyenko and Georgiadis, 1992; Marlowe, Stoyenko,
Masticola, and Welch, 1994; Kligerman and Stoyenko, 1986; Younis et al., 1994; Younis
et al., 1995; Laplante, Marlowe, and Stoyenko, 1996; Amaro, Marlowe, and Stoyenko,
1996; Wei, Stoyenko, and Goldszmidt, 1991; Halang and Stoyenko, 1991; Harelick et
al., 1995), we have developed both a detailed hierarchy (with multiple inheritance, e.g. a
latency cost function derives attributes from both real-time performance and fault- tolerance
objectives) and a general equational form for an objective function, derivable recursively
on the basis of the hierarchy (Real-Time Computing Lab, 1996). In brief, a function is
represented recursively as a function of more detailed cost functions, divergence, fusion,
scaling functions, and various algebraic combinators. Default definitions of these functions
correspond well to simple, common objectives. Numerical method solvers are easily applied
to this form and thus, the form can be used in our tools.

As expected, the equational form supports conversion, scaling and fusion of cost function
information. While conversion and fusion are typically found in discussion of cost functions,
scaling is also very important. A classic example of use of scaling is in a HPCC system
where the network is much slower than the general-purpose computers. Consequently, to
avoid an integrated objective function which is very sensitive to network cost changes and
very insensitive to computation cost changes, we may wish to express network timing as



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 181

slower units (e.g., in 10E-2 sec) and computation timing in faster units (e.g., in 10E-4 sec).
While normally an assessment step is evaluated by computing the objective function (a fast,
closed-form operation), the environment also provides more detailed, but time- consuming
tools e.g., symbolic executor, and simulator. It is expected that the use of these detailed
tools, will provide feedback on both the allocation quality and on that of the objective
function itself. Thus for instance, a simulation may reveal that a component generates
excessive communication traffic, while the communication minimization cost function is
seemingly well- represented in the objective function. For this reason, the objective function
may be changed, dynamically, by the user (acting upon the environment’s advice), or even
automatically (e.g., the communication minimization term may be multiplied by a handicap
factor).

Compilation and Interpretation

Compilation and interpretation are two alternatives for the translation of a component to
platform-specific code and subsequent execution of that code ñ or more accurately, two ends
of a spectrum of approaches to translation and execution. Full compilation translates the
entire source-language program into an intermediate form, in a (largely) platform- indepen-
dent manner, followed by language-independent translation of the intermediate code into
platform code and scheduling of that code, followed in turn by execution of the platform-
specific code. The key point is that the entire program is translated before execution. In
some cases, particularly with explicit language parallelism, or for real-time and similar
applications, the translation to intermediate form has to have some awareness of platform
properties. Interpretation relies on a statement-by-statement, as- needed translation of
source code into machine code, followed by the execution of that statement, together with
updates to the program environment (essentially, the symbol table and store). Compilation
requires lead time and resources for its initial phases, but results in faster code and po-
tentially better resource usage, both because the translation overhead can be avoided, and
because translation has some global (although static) knowledge. In addition, compilation
allows more time for analysis and transformation to improve the resulting code. In contrast,
interpretation has higher per-statement execution cost, but can begin to execute immedi-
ately. Interpreted code is more robust, because the platform-code generator has current and
dynamic knowledge of types, values, and so on; in some cases, such knowledge may even
lead to more efficient resource usage. However, only source-to-source transformations, and
some local optimizations, are easily realizable.

There are a number of intermediate alternatives. For example, components may be
stored in intermediate form (translated by the front end of the compiler). Carrying this
process somewhat further, Java and related languages compile to an intermediate form
(byte code for the Java VM), which is then instantiated for the particular platform and
interpreted. In either case, interpretation cost is significantly smaller, and a fair amount of
analysis and transformation is possible, although resource usage tends to correspond to the
interpreted case. The other approach is to compile as needed. It is possible, the first time a
statement is interpreted, to save a template for the code to be generated, which again cuts
down on interpretation time if the statement is revisited. It is also possible to compile in



www.manaraa.com

182 STOYEN AND PETROV

the background for subsequent execution, once we know that a component is to be used
on a particular platform. Finally, various groups are exploring dynamic or just-in-time
compilation, in which code is compiled as seen.

Compilation and interpretation also interact with instrumentation, stub generation and
linking. A component pre-compiled, even as far as intermediate form, can have hooks
inserted for instrumentation and for stubs. At a minimum, the Instrumenter and Stub
Generator can transform these into more fully elaborated hooks, using in addition UML
annotations, plus symbol table and dependency information provided by the compiler or by
analysis tools. Some will be independent of both platform and caller/callee/message partner,
and can be fully expanded immediately; most however require either knowledge of the target
platform, or specifics of the interacting process(es), and so can be resolved only when a
set of components is linked (either on a particular platform or into a platform- independent
hierarchical component), or when the component is instantiated on a particular platform;
determining efficient staging and correct binding times for various pieces of information
needed for these tools poses an interesting problem. It is more difficult to provide such
support in a pure interpreted scheme: stub generation and instrumentation both benefit
from global knowledge, and in the former case, even coordination between components,
at least at the level of signatures. This information will not in general be available to the
interpreter when stubs or instrumentation are to be generated. Hybrid schemes do not,
however, appear to suffer from the same difficulties, since compilation will typically have
proceeded far enough to make signatures and most other global information visible.

Capture of Transformation Rationale

Another challenging issue is the systematic capture of the assumptions that guided various
transformations. For example, optimization for average-case execution time may produce
poor code for real-time applications, may inhibit compiler extraction of parallelism, may
lead to resource contention in resource-poor environments, and so on. Another example is
the notorious sensitivity of behavior of parallelized code on platform characteristics, and the
need to take account of the resources and types of parallelism provided (and not provided)
by the platform. A third and important example is the sensitivity of optimization of called
routines on the aliases which are visible therein; as mentioned above, careful design can
reduce but not eliminate the impact of such aliasing. To emphasize the need for capture of
transformation assumptions, note that classical compiler optimization, and a number of other
transformation and analysis techniques, are directed at improving a single aspect, or a few
standard aspects, such as average-case performance, minimization of communication, and
memory usage. However, most of these transformations do not respect other constraints
and objectives, such as power consumption or heat generated, worst-case performance
(important for real-time applications), predictability, security, fault-tolerance, or portability
(although individual cases of course differ). Under various combinations of criteria and
transformations, we may be able to use the original transformation, use a guarded or modified
version, use another transformation ordinarily not as preferable, or not be able to transform
at all. While we do not believe a generic remedy or even classification scheme is possible,
we will continue to investigate this issue and fully expect to address a number of concrete and



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 183

practical situations (e.g., timely performance versus minimization of memory usage), where
we already have a good understanding of the tradeoffs, in our prototyped environment. A
mobile code component may thus exist in one or more of a number of forms, including
source code, intermediate code, virtual-machine code, library target-code templates, code
specific to a family of platforms. It may have versions, optimized or transformed under
particular assumptions. Finally, it may be translated and executed through a variety of
schemes, several of which have been outlined above.

Stub Generation for High-Performance, High-Assurance Computation and Communication

While stub generation is not a new challenge per se, stub generation technology suitable for
high-assurance HPCC software is not commonly used or understood. Stub generation needs
to support distributed, networked and heterogeneous resource use by mobile components.
The use must not be in the way of high performance and other objectives, while massive
computational and communication loads are to be expected. To support heterogeneous
resources, we employ template-driven stub generation as we did in (Wei et al., 1991). A
template is provided for every kind of stub (declaration, call, accept, returnÖ.) and for
every basic type or type constructor for parameter passing. A set of templates is provided
per language supported, in the native format, and an associated UML set is provided to
enable our tools to manage the templates. To support massive loads, we generate stubs
suitable for RPC and provide an RPC management system based on our Inverse Remote
Procedure Call concept (Stoyenko, Bosch, Aksit, and Marlowe, 1996). Essentially, the
stubs are instrumented to trigger either data to code or code to data flow. The IRPC system
considers the current system performance (global or local) and decides how to split the
computation into local and remote parts and what flows to provide for. Once this decision
is made, the Allocator is presented with a selection of allocatable components (which are
pieces of bigger components, split along the flows, if need be replicated partially at remote
nodes, and augmented with stubs). To support stub distribution as well as the invocation
of remote stubs for inverse RPC flows (code to data is considered ìinverseî, data to code
ìdirectî), general subprogram passing as parameters on RPC calls is implemented, as in
SUPRA-RPC (Stoyenko, 1994) (this includes support for out-of-scope side-effects if any).
Finally, should we discover a need to interoperate with any COTS RPC or ORB management
systems, we will build an RPC-level interoperable model, as we did in (Stoyenko, 1991).

Safety

A primary impetus for the development of Java and related languages and their environments
has been the need for safe execution of code. From our tools’ perspective, unsafe execution
occurs when a request is given to a resource which cannot be trusted to handle it, or when
a request has the potential of corrupting the resource. Java provides protections, although
not absolute guarantees, against the latter, via its Security Manager. Our tools will likely
adopt a similar strategy for remote requests. We may also develop analyses by which to
certify foreign components and/or their requests as safe for particular resources, as well as



www.manaraa.com

184 STOYEN AND PETROV

filters through which requests can be safely processed while bypassing resource-intensive
access to the full Security Manager. The former is more difficult. While local resources
can presumably be trusted or at least be checked for correctness, verifying the security
of remote resources is very difficult. Where the application does not need an immediate
response, we can use the remote resource “on spec”, and again use a filter to check the
result for correct message structure (e.g., type and typestate (Strom and Yemini, 1986)),
and against memory access errors. We look only to prevent disaster. We cannot check (with
rare exceptions) for the correct answer. We have to trust the internal semantics the same
way any component manager has to trust the semantics of components whose signature and
claimed invariants match. On the other hand, it is clearly desirable to be able to have some
assurance that another component or resource, even one supposedly analyzed and annotated
using our tools, can be trusted. We also hope to develop a protocol whereby the Analyzer
tools on the two sites can negotiate to obtain some degree of assurance of the safety of both
components/requests and resources on remote sites.

For compilation-related operations, security has several dimensions, the most significant
being memory access faults (“errors” if they are accidental) and file/resource/command
permission violations; the former is the motivation for the strong typing and the absence
of explicit pointers in Java, the latter for Java’s security manager. Related to memory
access faults is unrestricted aliasing; this is addressed in part again through restriction
of pointers and type casting, although (unlike Ada) Java does effectively allow aliases,
through essentially mandating the use of callbacks and handles to manage graphical and
other components. Hermes [BSY90] allows for typestate annotations, which address other
related issues by adding to type signatures information about constant values (also present
in C++) and initialization/non-initialization of values; Hermes also allows one to define a
lattice on the values sent or returned on a call, and to require by an annotation that the value
of a parameter to be higher (lower) than a given value, or the values of two parameters,
or the IN and OUT values of one parameter, to be related. Still another related issue is
value-based exceptions (such as overflow, or divide-by-zero) and their handling.

While it is clearly desirable to have secure, safe, error-free components, there are at least
three arguments against requiring all components to be so certified. First, it is impossible to
provide such assurances for a general-purpose language through a combination of language
design and static analyses—problems such as array-index- out-of-bounds, divide-by-zero,
and null-dereference cannot in general be caught by such means. Even when a guarantee is
possible, it may be difficult to provide in combination with desired language characteristics;
for example, apparently there are holes in the Java type system which allow memory access
violations. Second, as we have seen above, a certain degree of aliasing (and likewise type
casting, etc.) may be desirable or even necessary for some classes of programs. Third,
and perhaps most importantly, there are significant and sometimes unacceptable compile-
time and run-time costs in providing such security. For example, range analysis, which,
among other applications, can show that array accesses are in bounds, can be, even when
it converges, an extremely time- consuming analysis, especially interprocedurally. When a
component has to come on line immediately, it should be preferable to forgo the analysis,
and use dynamic checks instead. We may even choose to believe an annotation on a caller
from a trusted repository, that out-of-bounds values will never be delivered, and remove



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 185

checking altogether, at least until an analysis can be performed in the background. Likewise,
we may choose not to keep checking for changes in a global variable, perhaps risking some
incorrect and even formally unsafe computations, if we can roll back the computation. We
may choose to forgo checking for some abstruse exception by name, or not to provide a
handler for it, if we have reason to believe that it would only occur through malice, and that
(perhaps because all access is restricted at another level) this is unlikely.

5. Conclusion

Arguably, we have experienced the most incredible explosion in software and hardware
technology in the past decade. The rapid advances in hardware and the wide availability of
a spectrum of computing resources, most of which are interconnected via local networks
or ultimately through the Internet, has generated considerable interest in new approaches
to distributed computing. Mobile code is the new enabling technology for an array of
applications from Internet search engines (web-crawlers) to medical database connectivity
to telecommunications. Considerable effort with commendable results has been invested
in research and development in this relatively new area. We feel now is the right time to
consider these achievements in the global view of complex real-time computer systems
development. Mobile code is clearly a necessity and not merely a research toy anymore
and environments supporting it will become significantly more commercially available.

In this work we establish guidelines for mobile code management and define features
of an integrated development environment for mobile code applications. We consider
all angles of the problem of introducing code mobility to large complex system and we
propose tools to automate the design and enable the analysis of such systems. Further, we
provide a methodology and tools to analyze performance tradeoffs for mobile and traditional
software components, in an environment of scarce resources, via global resource allocation
and objective functions. For mobile components we examine performance vs. safety vs.
portability tradeoffs to determine what combination of compilation and interpretation of the
transmittable code satisfies best the performance objectives set by the developer. We utilize
objective functions and functional and non-functional description of the system components
to characterize the resources required and the performance guaranteed by the component.
In a dynamic global resource allocation problem we utilize heuristics to maximize the
satisfaction of composite objective functions, which represent real-time and other non-
functional concerns, for the entire system against the available QoS guarantees. Thus, we
provide detailed guidelines and specific insight into constructing an integrated design and
development environment and tools with support for mobile code.

Notes

1. Certain sorts of applications may, however, rely on the possibility of aliasing, particularly as array section
aliasing for scientific numerical codes, and or confluent access path expressions in regular dynamic structures,
such as doubly-linked lists. Component annotations may include such permitted, and even required, aliasing
patterns.



www.manaraa.com

186 STOYEN AND PETROV

References

The programming language Ada reference manual. 1983. ANSI/MIL-STD-1815A, LNCS 155, Springer-Verlag.
Adl-Tabatabai, A.-R., Langdale, G., Lucco, S., and Wahbe, R. Efficient and language-independent mobile pro-

grams.PLDI‘96, pp. 127–136.
Amaro, C., Marlowe, T. J., and Stoyenko, A. D. 1996. An Approach to Constructing complex evolving systems

using composition of knowledge domains.21st IFAC/IFIP Workshop on Real-Time Programming.
Auslander, J., Philipose, M., Chambers, C., Eggers,S. J., and Bershad, B. N. 1996. Fast, effective dynamic

compilation.PLDI‘96, pp. 149–159.
Acharya, A., Ranganathan, M., and Saltz, J. 1997. Sumatra: A language for resource-aware mobile programs.

Mobile Object Systems: Towards the Programmable Internet.Springer-Verlag, Lecture Notes in Computer
Science, No. 1222, pp. 111–130

Bhatt, D. 1993–96. SPIE, Honeywell Technology Center, Minneapolis, MN, USA.
Bharat, K. A., and Cardelli, L. 1995. Migratory applications.Proceedings of the 8th Annual ACM Symposium

on User Interface Software and Technology.Pittsburgh, PA (also available as Digital Systems Research Center
Research Report 138).

Binns, P., and Vestal, S. 1995. Architecture specifications for complex real-time dependable systems.First IEEE
International Conference on Engineering of Complex Computer Systems.Ft. Lauderdale, FL, USA, pp. 357–360.

Blakeley, C. J., Coburn, J., and Larson, P. 1989. Updated derived relations: Detecting irrelevant and autonomous
computable updates.ACM Transactions on Database Systems14: 369–400.

Brodie, L. 1981.Starting Forth. Prentice-Hall.
Baldi, M., Gai, S., and Picco, G. P. 1997. Exploiting code mobility in decentralized and flexible network

management.Proceedings of the First International Workshop on Mobile Agents.Berlin, Germany.
Booch, G., Rumbaugh, J., and Jacobson, I. 1999.The Unified Modeling Language User Guide. Reading, MA:

Addison Wesley.
Bowen, J. P., and Hinchey, M. G. 1994. Formal methods and safety critical standards.Computer67–71.
Buneman, P., Davidson, S., and Watters, A. 1992. A semantics for Complex objects and approximate queries.

Department of Computer Science, University of Pennsylvania, Philadelphia.
Callahan, J., and Purtilo, J. 1991. A packaging system for heterogeneous execution environments.IEEE Trans-

actions on Software Engineering17: 626–635.
Carzaniga, A., Picco, G. P., and Vigna, G. 1997. Designing distributed applications with a mobile code paradigm.

Proceedings of the 19th International Conference on Software Engineering.Boston, MA.
Ciancarini, P., and Rossi, D. 1997. Jada—coordination and communication for Java agents. InMobile Object

Systems: Towards the Programmable Internet.Springer-Verlag, Lecture Notes in Computer Science, no. 1222,
pp. 213–228.

Duggan, D. 1997. A type-based implementation of a language with distributed scope. InMobile Object Systems:
Towards the Programmable Internet. Springer-Verlag, Lecture Notes in Computer Science, no. 1222, pp. 277–
294.

Engler, D. R. 1996. VCODE: A retargetable, extensible, very fast dynamic code generation system.PLDI‘96,
pp. 160–170.

Franz, M. 1997. Adaptive compression of syntax trees and iterative dynamic code optimization: Two basic
technologies for mobile object systems. InMobile Object Systems: Towards the Programmable Internet.
Springer-Verlag, Lecture Notes in Computer Science, no. 1222, pp. 263–276.

Farmer, W. M., Guttman, J. D., and Swarup, V. 1996. Security for mobile agents: Authentication and state
appraisal.Proceedings of the Fourth European Symposium on Research in Computer Security. Rome, Italy,
Springer-Verlag Lecture Notes in Computer Science, no. 1146, pp. 118–130.

Farrow, R., Marlowe, T. J., and Yellin, D. M. 1992. Composable attribute grammars: Support for modularity in
translator design.ACM 1992 Principles of Programming Languages, pp. 223–234.

Gosling, J. 1995. Java intermediate bytecodes.ACM Workshop on Intermeidate Representation, pp. 111–118.
Gray, R. S. 1996. Agent Tcl: A flexible and secure mobile agent system.Proceedings of the Fourth Annual Tcl/Tk

Workshop. Monterey, CA, pp. 9–23.
Gibson, P. A., and Stoyenko, A. D. 1992. Development and integration of a concurrently executing interactive

user interface for the I-STAT portable clinical analyzer: A case study in real-time systems integration.J. Sys.
Integration2(4): 349–388.



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 187

Glagowski, T. G., and Jones, K. L. 1995. A new method for implementing fuzzy retrieval from a spatial database.
School of Electrical Engineering and Computer Science, Washington State U., Pullman, WA, submitted to
Information Sciences.

Ghezzi, C., and Vigna, G. 1997. Mobile code paradigms and technologies: A case study.Proceedings of the First
International Workshop on Mobile Agents.Berlin, Germany.

Halang, W. A., and Stoyenko, A. D. 1991.Constructing Predictable Real-Time Systems.Kluwer Academic
Publishers, with a preface by Konrad Zuse.

Harelick, M. S., Marlowe, T. J., Stoyenko, A. D., and Sinha, P. 1995. A constraint function classification for
complex systems development.1995 Complex Systems Engineering and Assessment Technology Workshop.
Ft. Lauderdale, FL.

Hinchey, M. G., and Bowen, J. P. (Eds.) 1995.Applications of Formal Methods. Prentice Hall International Series
in Computer Science, Hemel Hempstead, with a foreword by C.A.R. Hoare.

Hoang, N. D. 1991. The essential views of systems development.Proceedings of 1991 Systems Design Synthesis
Technology Workshop.Naval Surface Warfare Center, Silver Spring, Maryland, pp. 3–9.

Hoover, J. 1992. Alphonse: Incremental computation as a programming abstraction.Proceedings of the ACM
SIGPLAN ’92 Conference on Programming Language Design and Implementation.

Houstis, C. E. 1990. Module allocation of real-time applications to distributed systems.IEEE Transactions on
Software Engineering16(7): 699–709.

Stoyen, A. D., Marlowe, T. J., and Petrov, P. 1996. Heterogeneous debugger-monitor-corrector, working report.
Jones, N. D., Gomard, C. K., and Sestoft, P. 1993.Partial Evaluation and Automatic Program Generation.

Prentice-Hall.
Kligerman, E., and Stoyenko, A. D. 1986. Real-time Euclid: A language for reliable real-time systems.IEEE

Transactions on Software Engineering12(9): 941–949.
Laplante, P. A., Marlowe, T. J., and Stoyenko, A. D. 1996. Language mechanisms for real-time image processing.

Control Engineering Practice.
Levi, S.-T., Mosse, D., and Agrawala, A. K. 1988. Allocation of real-time computations under fault tolerance

constraints.Proceedings of the IEEE 1988 Real-Time Systems Symposium, pp. 161–170.
Lewis, B. T., Deutsch, L. P., and Goldstein, T. G. 1995. Clarity Mcode: A retargetable intermediate representation

for compilation.ACM Intermediate Representation Workshop, pp. 119–128.
Liu, Y. A., and Teitelbaum, T. 1995. Caching intermediate results for program improvement.Proceedings of the

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation, pp. 190–201.
Lo, V. M. 1988. Algorithms for task assignment in distributed systems.IEEE Trans. Computers37(11): 1385–

1397.
Marlowe, T. J., and Ryder, B. G. 1990. An efficient hybrid algorithm for incremental data flow analysis.17th

Annual ACM Symposium on the Principles of Programming Languages, pp. 184–196.
Marlowe, T. J., Stoyenko, A. D., Masticola, S. P., and Welch, L. R. 1994. Schedulability-analyzable exception

handling for fault-tolerant real-time languages.Real-Time Systems7(2): 183–212.
Marlowe, T. J., Stoyenko, A. D., Laplante, P., Daita, R. S., Amaro, C. C., Nguyen, C. M., and Howell, S. L. 1996.

Multi-goal objective functions for optimization of task assignment.Control Engineering Practice.
MPI-2: Extensions to the message-passing interface. 1996.MPI Forum.
Marlowe, T., and Ryder, B. 1991. Properties of data flow frameworks: A unified model.Acta Informatica28(2):

121–164.
Marlowe, T. J., Stoyenko, A. D., Welch, L. R., Laplante, P., and Masticola, S. P. 1993. Incremental analysis for

reuse and change in a software development environment for hard-real-time systems.IEEE RTOS.
Masticola, S. P., Marlowe, T. J., and Ryder, B. G. 1995. Multisource data flow problems.ACM Transactions on

Programming Languages and Systems(5): 777–803.
Prastowo, B. 1995. Derivation of incremental Datalog programs, Ph.D. Thesis, Queens University, Department

of Computer Science, Kingston, Ontario.
Real-Time Computing Lab at NJIT, 1993–1996. A hierarchy and general equational form for cost and objective

functions for complex real-time systems, an ongoing report.
Reps, T. 1988.Generating Language-Based Environments. ACM Distinguished Dissertation, MIT Press.
Shenoi, S., Melton, A., and Fan, L. T. 1992. Functional dependencies and normal forms in the fuzzy relational

database model.Information Sciences60: 1–28.
Silberman, A., and Marlowe, T. J. 1996. A task graph model for design and implementation of real-time systems,

to appear inSecond IEEE International Conference on Engineering of Complex Computer Systems.Montreal,
Canada.



www.manaraa.com

188 STOYEN AND PETROV

Sreedhar, V. C., Gao, G. R., and Lee, Y.-F. 1995. A new approach to exhaustive and incremental data flow analysis
using DJ graphs/ McGill University Technical Report ACAPS Memo 95.

Stone, H. S. 1977. Multiprocessor scheduling with the aid of network flow algorithms.IEEE Transactions on
Software EngineeringSE-3(1): 85–93.

Stoyen, A. D., Petrov, P., Marlowe, T. J., and Chiara, J. J. 1996 and 1997. A system synthesis tool for complex,
embedded real-time systems, progress reports, DARPA SBIR 962-059, 21st Century Systems, Inc.

Stoyenko, A. D. 1987. A real-time language with a schedulability analyzer. Ph.D. Dissertation, Department of
Computer Science, University of Toronto.

Stoyenko, A. D., Marlowe, T. J., and Laplante, P. A. 1996. A description language for engineering of complex
real-time systems.J. Real-Time Systems.

Stoyenko, A. D., Marlowe, T. J., and Younis, M. F. 1995. A language for complex real-time systems.Computer
Journal38(5).

Stoyenko, A. D., Laplante, P. A., Harrison, R., and Marlowe, T. J. 1994. Engineering of complex systems: A case
for dual use and defense technology conversion.IEEE Spectrum31(11): 32–39.

Stoyenko, A. D., and Baker, T. 1994. Real-time schedulability-analyzable mechanisms in Ada9X.Proceedings
of the IEEE.

Stoyenko, A. D., Welch, L. R., Laplante, P. A., Marlowe, T. J., Amaro, C., Cheng, B.-C., Ganesh, A. K., Harelick,
M., Jin, X., Younis, M., and Yu, G. 1993. A platform for complex real-time applications.1993 Complex Systems
Engineering and Assessment Technology Workshop.Beltsville, Maryland, USA.

Stoyenko, A. D. 1991. General model and mechanisms for heterogeneous model-level RPC interoperability.IEEE
1991 Symposium on Parallel and Distributed Processing. Dallas, Texas, USA, pp. 668–675.

Stoyenko, A. D. 1994. SUPRA-RPC: SUBprogram PaRAmeters in remote procedure calls.Software—Practice
and Experience24(1): 27–49, earlier version inIEEE SPDP‘90.

Stoyenko, A. D., and Halang, W. A. 1993. High-integrity PEARL: A language for industrial real-time applications.
IEEE Software10(4): 65–74.

Stoyenko, A. D., Marlowe, T. J., Halang, W. A., and Younis, M. 1993. Enabling efficient schedulability analysis
through conditional linking and program transformations.Control Engineering Practice1(1): 85–105.

Stoyenko, A. D., Marlowe, T. J., Cheng, B.-C., and Ganesh, A. Performance prediction functions for real-time
software components. In consideration forIEEE Transactions on Parallel and Distributed Systems.

Stoyenko, A. D., and Marlowe, T. J. 1992. Polynomial-time transformations and schedulability analysis of parallel
real-time programs with restricted resource contention.J. Real-Time Systems4(4): 307–329.

Stoyenko, A. D., Hamacher, V. C., and Holt, R. C. 1991. Analyzing hard-real-time programs for guaran-
teed schedulability.IEEE Transactions on Software Engineering17(8): 737–750. Earlier version inIEEE
RTSS‘87.

Stoyenko, A. D., Marlowe, T. J., Younis, M. F., and Petrov, P. 1997. A language support environment for complex
distributed real-time applications. InProceedings of the Third IEEE International Conference on Engineering
of Complex Computer Systems, extended version invited and submitted toIEEE Transactions on Software
Engineering, IEEE Computer Society Press.

Stoyen, A. D., and Laplante, P. A. (Eds.) 1995.Engineering of Complex Computer Systems: Fundamentals,
Techniques & Applications. IEEE Press.

Stoyenko, A. D., Bosch, J., Aksit, M., and Marlowe, T. J. 1996. Load balanced mapping of distributed objects to
minimize network communication.J. Parallel and Distributed Processing34(2): 117–137.

Stoyenko, A. D. 1992. Evolution and state-of-the-art of real-time languages.J. Systems and Software18: 61–84.
Stoyenko, A. D., and Georgiadis, L. 1992. On optimal lateness and tardiness scheduling in real-time systems.

Computing47: 215–234.
Strom, R., and Yemini, S. 1986. Typestate: A programming language concept for enhancing software reliability.

IEEE Trans. on Software Engineering12: 157–171.
Trivedi, K. S., Sahner, R., and Puliafito, A. 1995.Performance and Reliability Analysis of Computer Systems An

Example-Based Approach Using the SHARPE Software Package. Kluwer Academic Publishers.
Wei, Y.-H., Stoyenko, A. D., and Goldszmidt, G. S. 1991. The design of a stub generator for heterogeneous RPC

systems.J. Parallel and Distributed Computing11: 188–197.
Yellin, D. M. 1993. Speeding up dynamic transitive closure for bounded degree graphs.Acta Informatica30:

369–384.
Yellin, D. M., and Strom, R. E. 1991. INC: A language for incremental computations.ACM Transactions on

Programming Languages and Systems13(2): 211–236.



www.manaraa.com

TOWARDS A MOBILE CODE MANAGEMENT ENVIRONMENT 189

Younis, M. F., Marlowe, T. J., and Stoyenko, A. D. 1994. Compiler transformations for speculative execution in
a real-time system.IEEE 1994 Real-Time Systems Symposium. San Juan, Puerto Rico.

Younis, M. F., Tsai, G., Marlowe, T. J., and Stoyenko, A. D. 1995. Formal verification for speculative execution
in real-time systems.First IEEE International Conference on Engineering of Complex Computer Systems.

Alexander D. Stoyenis Endowed Full Professor of Computer Science and Director, Center
for Management of Information Technology at the University of Nebraska at Omaha. He
received his Ph.D. in Computer Science from the University of Toronto in 1987. Upon
graduation, Dr. Stoyen joined IBM T. J. Watson Research Center as a research staff member.
In 1990, he became an Assistant Professor of Computer Science at the New Jersey Institute of
Technology, where he built the Dependable Real-Time Systems Laboratory. At the time of
leaving NJIT in January 1999, Dr. Stoyen was an Associate Professor of Computer Science
and of Electrical and Computer Engineering. Dr. Stoyen has held visiting, consulting
and advisory appointments at universities, corporations and other organizations throughout
North America, Europe and Asia. He has contributed significantly to a number of key
technological concepts in real-time systems and has published more than 110 articles in
journals, books and conference proceedings. Dr. Stoyen has served as an organizer of
many professional events, chair of IEEE Technical Committees, and editor or guest editor
of book series and archived peer-reviewed journals, including theIEEE Computer, J. Real-
Time ImagingandJ. Real-Time Systems. He is also founding CEO and CTO of 21st Century
Systems, Inc., a company researching, prototyping and developing revolutionary tools for
construction and operation of complex, large-scale software applications. Dr. Stoyen is a
Senior Member of the IEEE and is an IEEE Computer Society Golden Core Member.

Dr. Petrov received his Ph.D. in Computer Science from New Jersey Institute of Technol-
ogy in 2000 for his research on Agent-based Real-time Decision Support Systems. While
at NJIT, Dr. Petrov was part of the Dependable Real-time Systems Laboratory, where he
contributed to multiple ONR and NSF sponsored research projects on Real-time languages,
compilers, tools and systems engineering. Dr. Petrov graduated (summa cum laude) from
University of Central Florida with a Bachelor of Science degree in Computer Science.
During his last year in UCF Dr. Petrov participated in a STRICOM-sponsored Computer
Generated Forces program at the Institute for Simulation and Training, Orlando, FL. Cur-
rently Dr. Petrov is a Vice President, Technology & Development at 21st Century Systems,
Inc., a growing small business focusing on innovative software technology complex mil-
itary and other command and control problems. Plamen Petrov has lead a number of
successful R&D and projects at 21CSI while maintaining his research interests in compile-
time analysis, complex distributed systems, mobile code, decision support systems, and
computer-based command and control.



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


